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Spectrum Analysis and Convolutional Neural Network for
Automatic Modulation Recognition

Yuan Zeng, Meng Zhang, Fei Han, Yi Gong , Senior Member, IEEE, and Jin Zhang

Abstract—Recent convolutional neural networks (CNNs)-based
image processing methods have proven that CNNs are good at
extracting features of spatial data. In this letter, we present a
CNN-based modulation recognition framework for the detection
of radio signals in communication systems. Since the frequency
variation with time is the most important distinction among radio
signals with different modulation types, we transform 1-D radio
signals into spectrogram images using the short-time discrete
Fourier transform. Furthermore, we analyze statistical features
of the radio signals and use a Gaussian filter to reduce noise.
We compare the proposed CNN framework with two exist-
ing methods from literature in terms of recognition accuracy
and computational complexity. The experiments show that the
proposed CNN architecture with spectrogram images as signal
representation achieves better recognition accuracy than existing
deep learning-based methods.

Index Terms—Modulation recognition, convolutional neural
network, time-frequency analysis, noise reduction.

I. INTRODUCTION

IN COMMUNICATION systems, transmitted signals are
generally modulated with different modulation methods

for efficient data transmission. As an intermediate process
between signal detection and signal demodulation, automatic
modulation recognition (AMR) provides modulation infor-
mation of signals and plays a key role in practical civilian
and military applications, such as cognitive radio, signal
recognition, threat assessment and spectrum monitoring.

In the last few decades, a large number of algorithms have
been developed for AMR. In general, AMR algorithms can be
categorized into two classes: likelihood based method and fea-
ture based method. The likelihood based approaches use prob-
ability theory, hypothesis testing theory and a proper decision
criterion to solve modulation recognition problems [1], while
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feature based approaches perform feature extraction and classi-
fication. In feature based approaches, recognition performance
is proportional to the number of manually designed features.
Various statistical features of the instantaneous amplitude,
phase and frequency have been used to classify modulation
types, such as high-order statistics (HOS) [2] and cyclo-
stationary characteristics [3]. For the classification process,
the existing classifiers include decision tree algorithms [4]
and machine learning algorithms, such as support vector
machine [5] and artificial neural network [6].

Recently, deep learning as a powerful machine learning
method has achieved great success in image classification and
speech recognition, etc. Deep learning based method uses a
cascade of multiple layers of nonlinear processing units for
feature extraction and transformation. It can automatically
optimize the extracted features for minimizing classification
error. Deep learning approaches have also been applied in
modulation recognition. The paper [7] surveys the emerg-
ing applications of deep learning in radio signal processing
and uses GNU radio to generate an open data set of modu-
lated signals with in-phase and quadrature (IQ) information
for modulation recognition. O’Shea et al. [8] study the adap-
tation of convolutional neural networks (CNNs) to the data
set in [7] and compares the recognition performance of the
proposed CNN against those of the expert cyclic moment
features based methods. Later, the paper [9] makes a com-
parison between CNN, residual networks, inception modules,
convolutional long short-term deep neural networks based on
the data set in [7], and experiment results show that modula-
tion recognition performance is not limited by network depth.
Furthermore, the paper [10] proposes a pre-processing sig-
nal representation that leverages the IQ information and HOS
feature of the modulated signals to improve the recognition
performance of their presented deep learning architectures.

CNNs are good at extracting features of spatial data and
have shown significant results in image processing, such as
image classification and semantic segmentation. Images of
spectrum features have been exploited to modulation recog-
nition. The paper [11] uses ambiguity function (AF) images
as signal representation and performs modulation recognition
using fine-tuning stacked sparse autoencoder [12]. The method
in [13] was proposed to automatically recognize modulation
types using spectral correlation function (SCF) as signal rep-
resentation and deep belief network as classifier. In this letter,
we present a time-frequency analysis of the modulated sig-
nals, where one dimensional signals are transformed into two
dimensional spectrogram images by using the short-time dis-
crete Fourier transform, and we design a CNN architecture to
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Fig. 1. A simple communication system with a transmitter and a receiver
connected through a channel.

recognize modulations automatically. We name the algorithm
spectrum CNN (SCNN). In addition, we use a Gaussian fil-
ter to suppress noise, and refer to the method as SCNN2.
We evaluate the recognition performance of the proposed
methods using the public data set in [7] with 11 common
used modulation types, and compare the recognition accuracy
of the SCNN2 with those of the methods in [8] and [10].
Furthermore, we evaluate the effectiveness of the three repre-
sentation methods: the spectrogram image, AF image and SCF
image using CNN based recognition performance compari-
son. Moreover, the computational complexity of the methods
in experiments is analyzed in terms of memory consumption,
learned parameters and training time per signal.

II. TIME-FREQUENCY ANALYSIS AND NOISE REDUCTION

A. Time-Frequency Analysis

Let us consider a simple communication system in Fig. 1,
which consists of a transmitter, a channel and a receiver. Let
s(t) denote a transmission symbol that to be transmitted to the
receiver. The transmission symbol s(t) is first converted into
transmission signal using a modulation function F , and the
signal then is transmitted to the receiver via a communication
channel h(t). Let y(t) denote the observed signal of the trans-
mission symbol s(t) at the receiver. The received signal y(t) is
then given as y(t) = x(t)+v(t), where x (t) = F(s(t))∗h(t) is
the received clean signal and v(t) is the additive white Gaussian
noise. Given the observed signal y(t), modulation recognition
aims to predict the modulation function F , and thus to provide
modulation information for estimating the transmitted symbol
s(t) from the observed signal y(t). Let y(n) denote the discrete-
time observed signal at time-sampling index n. y(n) can be
obtained by sampling the continuous-time signal y(t) at time
n
fs

, i.e., y(n) = y(t)|t=n/fs , and −∞ < n < +∞.
In this letter, we use spectrogram as a visual representa-

tion of the spectrum of frequencies of the observed signals,
which vary with time. The spectrogram is obtained by comput-
ing the squared magnitude of the short-time discrete Fourier
transform (STFT) of the observed signals. Let w(·) denote a
window function of length J and let K be the window shift.
The observed signals are windowed and transformed into the
frequency domain by applying the STFT, that is,

Y (f ,m) =
mK+J∑

n=mK+1

y(n)w(n − mK )e−jωf (n−mK ), (1)

where Y(f,m) is the DFT coefficient at frequency-bin index
f and discrete-time frame index m, and ωf = 2πf /J is
the discrete frequency variable at f. The spectrogram is then
given by Ỹ (f ,m) = |Y (f ,m)|2. Ỹ (f ,m) is a mixed time-
frequency representation of y(n), since each location on Ỹ (f,m)
corresponds to a point in frequency and time.

B. Noise Reduction

Performance of modulation recognition can be disturbed
severely by the additive noise v(t). Since transmitted mes-
sages are base-band signal while power spectral density of
noise is independent of frequency and uniformly distributed
throughout the frequency domain, performing noise reduction
directly on spectrogram images with Gaussian filter only pro-
duces blurred images and has limited capability of frequency
rejection. Here, we use low-pass filter to reduce noise of the
signal y(t) before the time-frequency analysis. To reduce noise
of the observed signals, we design a Gaussian filter, that is,
x̂ (n) = y(n)G(n), where x̂ (n) is the filtered signal and the

Gaussian filter G(n) is given by G(n) = 1√
2π

e−
n2

2 .

III. CONVOLUTIONAL NEURAL NETWORK FOR

MODULATION RECOGNITION

Fig. 2 shows our proposed CNN architecture, which is a
neural network with many levels of non-linearities allowing
them to represent a highly non-linear classification function
that maps spectrogram features to modulation methods. It con-
sists of one input layer, 4 convolutional layers, where the first
three layers have max pooling. After the convolutions, it is fol-
lowed by one densely connected layer and finally a softmax
layer. ReLU is used for all activation functions. The input is
the images with dimension of 100 × 100 × 3. The number
of filters used in ith convolutional layer is 64, 32, 12, 8 with
dimension of 3 × 3, 3 × 3, 3 × 3 and 3 × 3, respectively.
The size of zero-padding and stride are 1 and 1, respectively.
The pooling size of the max-pooling layer is (2, 2). The fully
connected layer consists 128 neurons. The design of network
architecture first consider the used architectures in related
work [8] and [10], and the recommend setup of high parame-
ters, such as the number of layer, filter and filter size, in image
classification. Later, the network architecture is determined by
performing multiple experiments with different high parame-
ters and comparing their recognition accuracy. The output of
the network is the estimated modulation method of the input
spectrogram image. Moreover, the network is trained using
stochastic gradient descent to minimize the cross-entropy loss
function [14]: w∗ = argminW

1
N

∑N
i=1 L(w; xi , t i ) with the

number of training examples N, the right labels t i and the
predict labels x i .

IV. EXPERIMENTS

A. Data

This experiment uses the data set RadioML2016.10a in [7]
as the basic data set. It considers 11 modulation methods:
BPSK, QPSK, 8PSK, 16QAM, 64QAM, BFSK, CPFSK,
PAM4, WB-FM, AM-SSB and AM-DSB, which are widely
used in practical communication systems and operates on both
discrete binary alphabets and continuous alphabets. The data
set considers 20 different signal-to-noise ratios (SNRs) vary-
ing from −20 dB to 18 dB, and 1000 signals per modulation
mode per SNR. Each signal consists of 128 samples, and each
sample contains the real and imaginary parts.
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Fig. 2. CNN architecture for modulation recognition.

In this letter, the signals are transformed into spectrogram
images using frame-based processing, with a frame length of
40 samples and a 90%-overlapping Hann window. Our spec-
trogram images are generated using ‘spectrogram’ function
in MATLAB R2017b and saved as 200 × 200 × 3 RGB
images. Later, we use nearest interpolation to re-size the image
resolution of spectrogram image from 200 × 200 × 3 to
100 × 100 × 3. We refer to the proposed framework as SCNN.
To reduce noise, we use the Gaussian filter with size 7 to pre-
process the observed signal y(n), and we refer to the SCNN
method with noise reduction pre-processing as SCNN2.

B. Experimental Setup

To evaluate the recognition performance of the proposed
framework, we consider two experiments in this section.
First, we compare the recognition accuracy of the SCNN and
SCNN2 with two methods from [8] and [10], which we refer
to as CNNR-IQ and CNNR-IQFOC, respectively. Both the
CNNR-IQ and CNNR-IQFOC are proposed for classifying
modulation modes using the same data set as in this letter.
Moreover, we compare the computational complexity of the
SCNN2 with those of the CNNR-IQ and CNNR-IQFOC in
terms of memory consumption, number of learned parameters
and training time per signal.

Later, to evaluate the effectiveness of the proposed spectrum
analysis of the modulated signals, we further use the ambigu-
ity function image and spectral correlation function image as
signal representation, which we refer to as AF-CNN and SCF-
CNN, respectively. We compare the recognition performance
of the proposed SCNN2 with those of the AF-CNN and
SCF-CNN versus different SNRs.

Our experiments randomly select 700 signals per modu-
lation mode per SNR as training data, and the remaining
signals are divided into validation data (100 signals per mod-
ulation per SNR) and test data (200 signals per modulation
per SNR). Specifically, we train classification model per SNR
with 700 × 11 images. We normalize all images before pro-
cessing. The learning rate starts with 0.0005 and is divided
by a factor of 10 every 100 iterations. We stop the training
process when the validation loss is not decreased within 15
iterations, and we save the trained model with the smallest
validation loss. The recognition accuracy of the SCNN2 ver-
sus training steps is shown in Fig. 3. Later, the trained model
is used to predict the modulation type of each test image. The
CNN based experiments are implemented using Tensorflow
based Keras and Nvidia TITAN X GPU.

C. Experiment Results

Fig. 4 shows the recognition accuracy comparison between
the SCNN, SCNN2, CNNR-IQ and CNNR-IQFOC versus

Fig. 3. Recognition accuracy of SCNN2 versus training epochs at 10dB
SNR.

Fig. 4. Recognition accuracy comparison between the SCNN, SCNN2,
CNNR-IQ and CNNR-IQFOC versus SNR.

different SNRs. The results in Fig. 4 show that the recog-
nition accuracy of the SCNN2 is around 4% lower than those
of the SCNN method at the 18 dB SNR, but around 2%
higher than those of the SCNN when SNR is below −4 dB,
since the noise reduction algorithm have limited capability to
improve SNR when signals are severely distorted and close
to clean. In addition, the recognition accuracy improvement
is around 10% when SNR is between −4 dB and 16 dB.
Furthermore, we observe that both the SCNN2 and CNNR-
IQFOC obtain better recognition accuracy than the CNNR-IQ.
Specifically, the recognition performance of the SCNN2 is
around 5% higher than those of the CNNR-IQ when the SNR
is below −4 dB, and is around 15% to 20% higher than
those of the CNNR-IQ when SNR is above −2 dB. Moreover,
the recognition performance of the SCNN2 and the CNNR-
IQFOC is very similar when the SNR level is lower than
−8 dB. The SCNN2 gets around 5% lower accuracy than
the CNNR-IQFOC at the −8 dB, −6 dB and −4 dB SNR.
However, the SCNN2 gets around 8% higher accuracy than
the CNNR-IQFOC when SNR is between 2 dB and 18 dB.
It indicates that the SCNN2 generally has similar or slightly
worse performance than the CNNR-IQFOC when the SNR is
lower than −2 dB, but performs better than the CNNR-IQFOC
when the SNR is above −2 dB.

Next, we compare the recognition performance of the
SCNN2 with those of the AF-CNN and SCF-CNN. The exper-
iment results in Fig. 5 show that the SCNN2 performs better
than both the AF-CNN and the SCF-CNN. Specifically, the
SCNN2 gets around 15% higher accuracy than the SCF-CNN
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Fig. 5. Recognition accuracy comparison between the SCNN2, SCF-CNN
and AF-CNN versus SNR.

Fig. 6. Spectrum features of a BPSK modulated signal at 10 dB SNR.

TABLE I
COMPUTATION COMPLEXITY COMPARISON BETWEEN THE SCNN2,

CNNR-IQ AND CNNR-IQFOC

and gets around 20% higher accuracy than the AF-CNN when
the SNR is above −2 dB. The recognition performance of the
SCNN2 and the SCF-CNN is very similar when the SNR level
is lower than −8 dB. This can be explained that the recog-
nition performance of learning based classification method is
proportional to the diversity of the input data, and the spectro-
gram analysis in the SCNN2 provides richer time-frequency
representation of the signal than the ambiguity function image
in the AF-CNN and the spectral correlation function image in
the SCF-CNN, see Fig. 6.

D. Computational Complexity

The computational complexity of the SCNN2, CNNR-IQ
and CNNR-IQFOC is evaluated by comparing memory con-
sumption, the number of learned parameters and the average
training time per signal. As shown in Table I, the SCNN2
requires much more memory than the CNNR-IQ and the
CNNR-IQFOC, since the input data size of the SCNN2,
CNNR-IQ and CNNR-IQFOC are 100 × 100 × 3, 2 × 128,
and 3 × 128, respectively. However, the number of learned
parameters of the SCNN2 is smaller than those of the ref-
erence methods, since the SCNN2 uses pooling access and
small number of filters in each convolutional layer, while the
network architecture of the CNNR-IQ did not include pooling
layer and the CNNR-IQFOC uses larger number of filters in
each convolutional layer. In addition, the training time of the
SCNN2 is bigger than those of the CNNR-IQ, but smaller than
those of the CNNR-IQFOC.

V. CONCLUSION

In this letter, we presented a time-frequency analysis of
modulated radio signals and designed a novel spectrum
analysis based convolutional neural network (SCNN) frame-
work for automatic modulation recognition. We applied the
short-time discrete Fourier transform to the observed signals
and used spectrogram images as the input of the SCNN.
Experiment results demonstrated the impressive performance
of the proposed SCNN method and showed the effectiveness of
the introduced noise reduction approach, which is referred to
as SCNN2. Moreover, experiments on the comparison between
the SCNN2 and two deep learning based methods (CNNR-IQ
and CNNR-IQFOC) from literature demonstrated the better
recognition capability of the proposed SCNN2. Furthermore,
experiments on the comparison between the SCNN2 and
two other spectrum analysis based methods (AF-CNN and
SCF-CNN) demonstrated the effectiveness of the spectrogram
image. The computational complexity analysis indicated that
the SCNN2 requires more memory but less learned parameters
than the reference methods, and the training time per signal of
the SCNN2 is bigger than those of the CNNR-IQ but smaller
than those of the CNNR-IQFOC.
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